

# Development of an Industrial Biotechnology Process

Sterilization: Thermal

Dr. Kurt Eyer  
[kurt.eyer@epfl.ch](mailto:kurt.eyer@epfl.ch)

[k.eyer@bioengineering.ch](mailto:k.eyer@bioengineering.ch)

# Sterilize what?

## Different phases:

- Gas sterilization
- Liquid sterilization
- Solids sterilization

## Different locations:

- Space: storage, production, purification, formulation/packing suites
- Bioreactors
- DSP and other equipment

# Sterilize how?

- Thermal
- Chemical
- Irradiation
- Barrier (filtration)

Thermal sterilization preferred, providing that materials and solutions can withstand elevated temperatures for sufficient periods

# Death

The irreversible loss of the ability  
to multiply

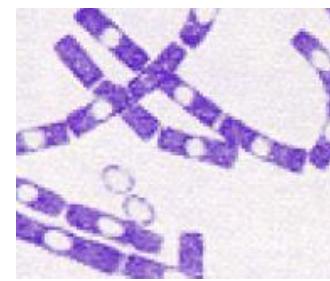
# Sterilization

The destruction or removal of all  
microorganisms

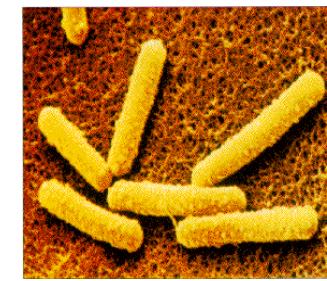
# Sterility

Sterility means that no living microorganism is present

To reach sterility is a question about  
**PROBABILITY**


# Sterilisation

## Mechanisms of heat inactivation of microorganisms


Two classes with respect to heat sensitivity



Bacterial endospores  
(Bacillus, Clostridium)



Vegetative cells and spores  
of other types: fungal spores



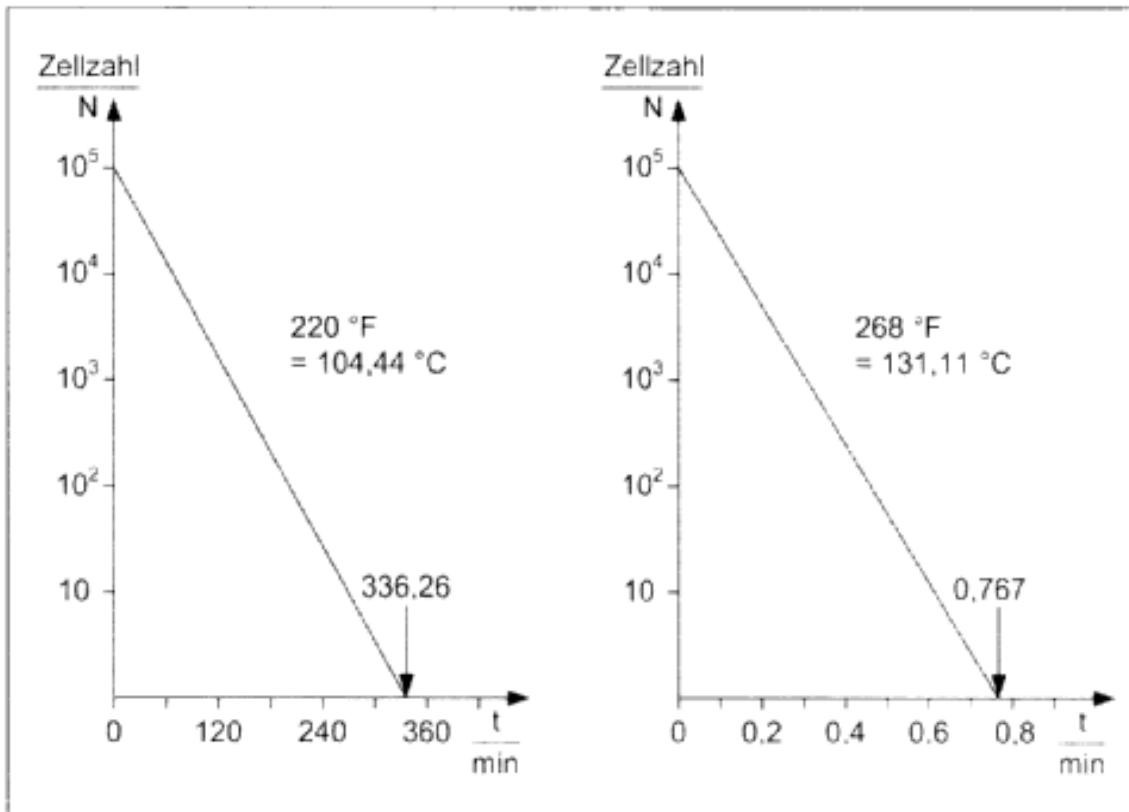
# Kinetics of Heat Sterilisation

$$\frac{-dN}{dt} = k * N \quad [1]$$

$k$  ( $\text{min}^{-1}$ ) **specific heat inactivation** constant,  
also known as **death rate constant**

Integration:

$$\ln\left(\frac{N}{N_0}\right) = -k*t \quad [2]$$


which can be rearranged to

$$\ln(N) = \ln(N_0) - kt \quad [3a]$$

Or  $N = N_0 e^{-kt}$  [3b]

k: *characteristic for a strain but depends also on physiological state, environmental conditions (pH, solids in medium, ...temperature..)*

# Kinetics of Heat Sterilisation



Inactivation of  
*B. stearothermophilus* at  
two different temperatures

# Kinetics of Heat Sterilisation

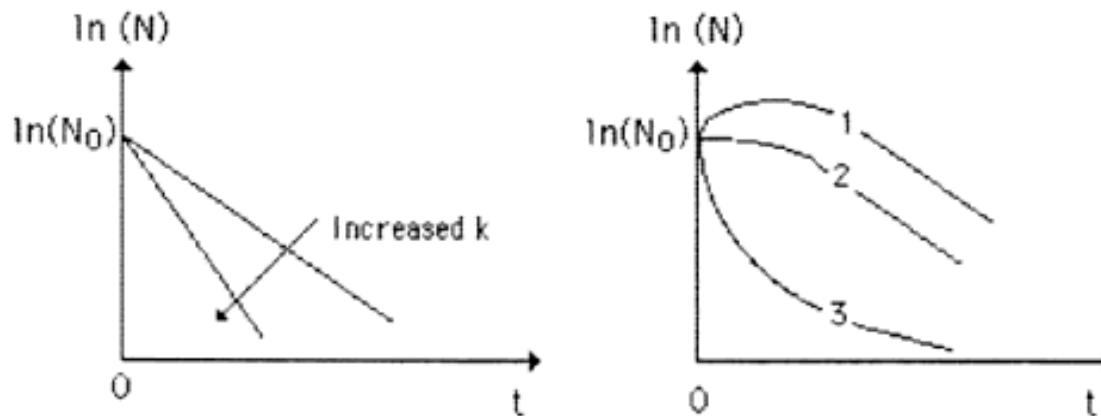



Fig 10.2 Heat inactivation curves. The left hand figure shows two inactivation curves with different death rate constants. The right hand figure shows some deviations from the model:

1. This form may be caused by super-dormant spores, which are activated by the first heat treatment and do not germinate unless they get this treatment;
2. This may be caused by delayed heat transfer in the experiment or it may be observed in samples that contain aggregates of cells, since analysis is made by viable count that gives number of colony forming units rather than number of cells. The viable count does then not decline until the last cell in an aggregate is killed;
3. Non-uniform heat resistance in the population, e.g. when the sample contains species with different thermal sensitivity.

# Kinetics of Heat Sterilisation

*The heat inactivation constant depends on temperature like most rate constants of chemical reactions. This is usually described by Arrhenius equation:*

$$k = A * e^{-\Delta E / R * T} \quad [4]$$

$A$  ( $\text{min}^{-1}$ );  $E$  ( $\text{Jmol}^{-1}$ ),  $R$  ( $\sim 8.31 \text{ Jmol}^{-1} \text{ K}^{-1}$ ),  
 $T$  ( $^{\circ}\text{K}$ )

$$\rightarrow \ln k = -\frac{\Delta E}{R} * \frac{1}{T} + \ln A \quad [5]$$

Table 10.1 Examples of  $\Delta E$  values for heat inactivation of spores and some chemical reactions.

| Inactivation of                     | $-\Delta E$ ( $\text{kJ mol}^{-1}$ ) |
|-------------------------------------|--------------------------------------|
| <i>B. subtilis</i> spores           | 318                                  |
| <i>B. stearothermophilus</i> spores | 283                                  |
| <i>Cl. botulinum</i> spores         | 343                                  |
| Folic acid                          | 70                                   |
| d-pantothenyl alcohol               | 88                                   |
| Cyanocobalamin                      | 97                                   |
| Thiamine HCl                        | 92                                   |
| <i>Maillard reactions</i>           | $\approx 125$                        |

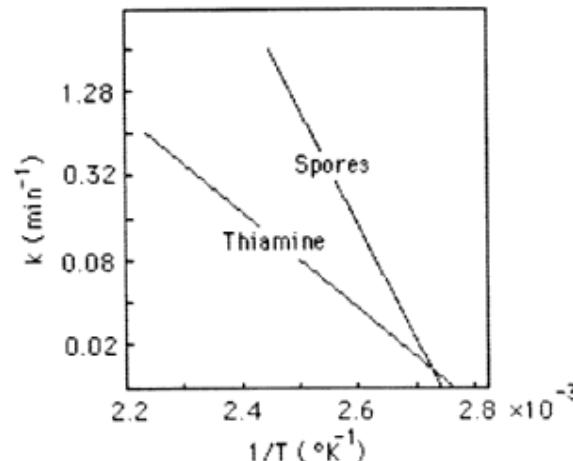
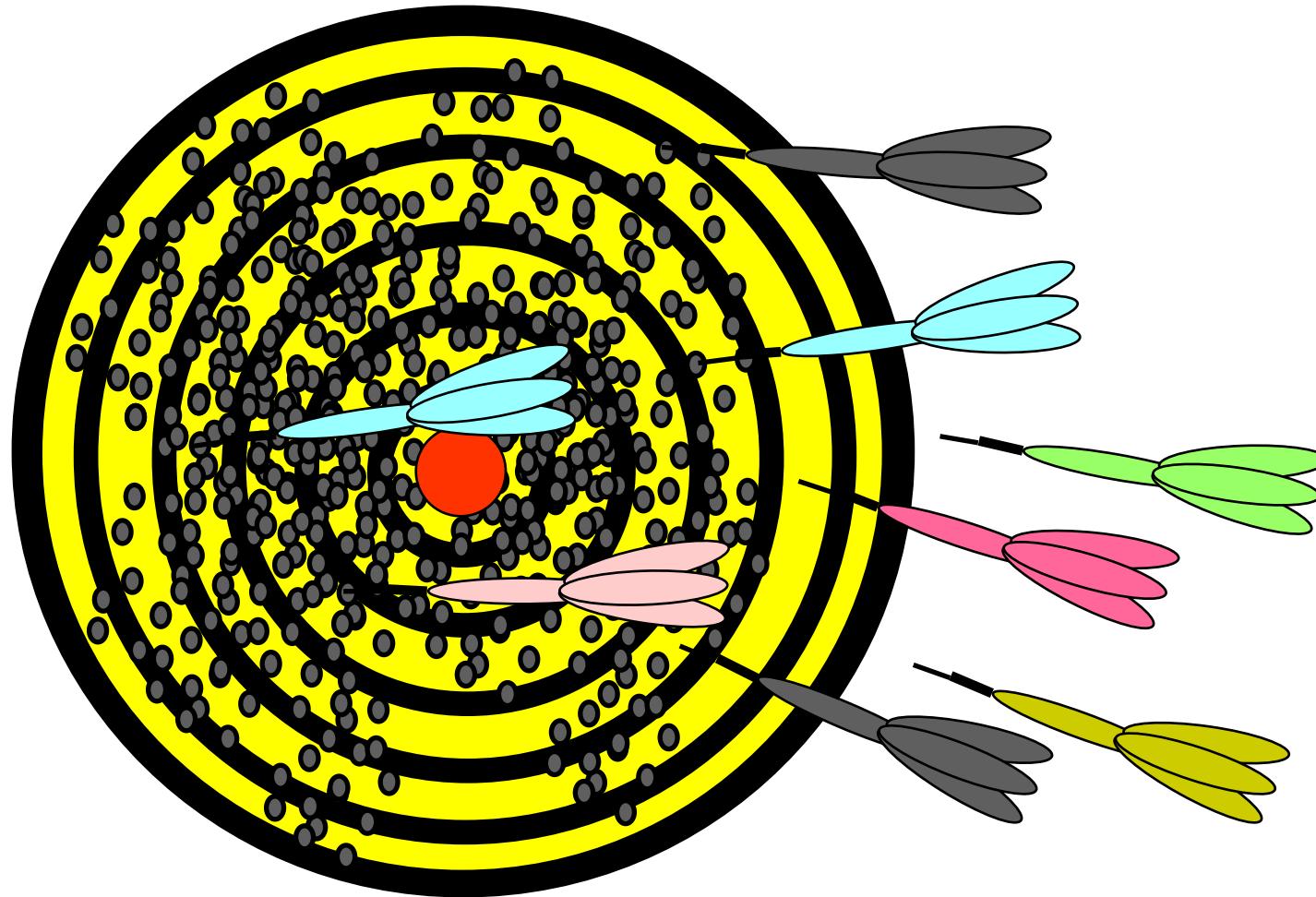


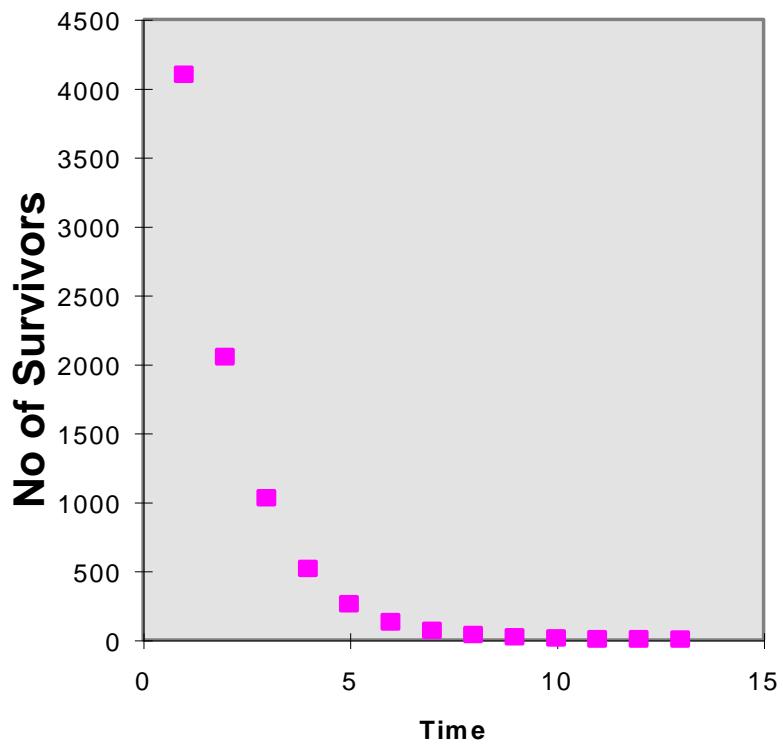

Fig 10.3 Arrhenius plots of inactivation of *B. stearothermophilus* spores and thiamine. Note that a temperature increase has a larger effect on the spore inactivation rate than on the vitamin inactivation rate.

$$\ln \frac{1}{10} = -k_d \cdot t$$

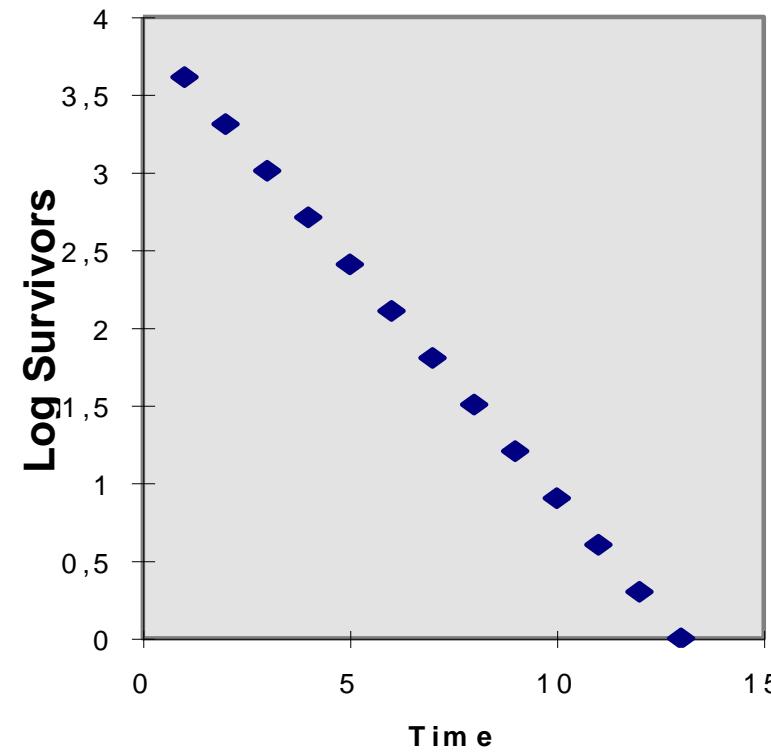

$$-2,303 = -k_d \cdot t$$

# Killing Kinetics

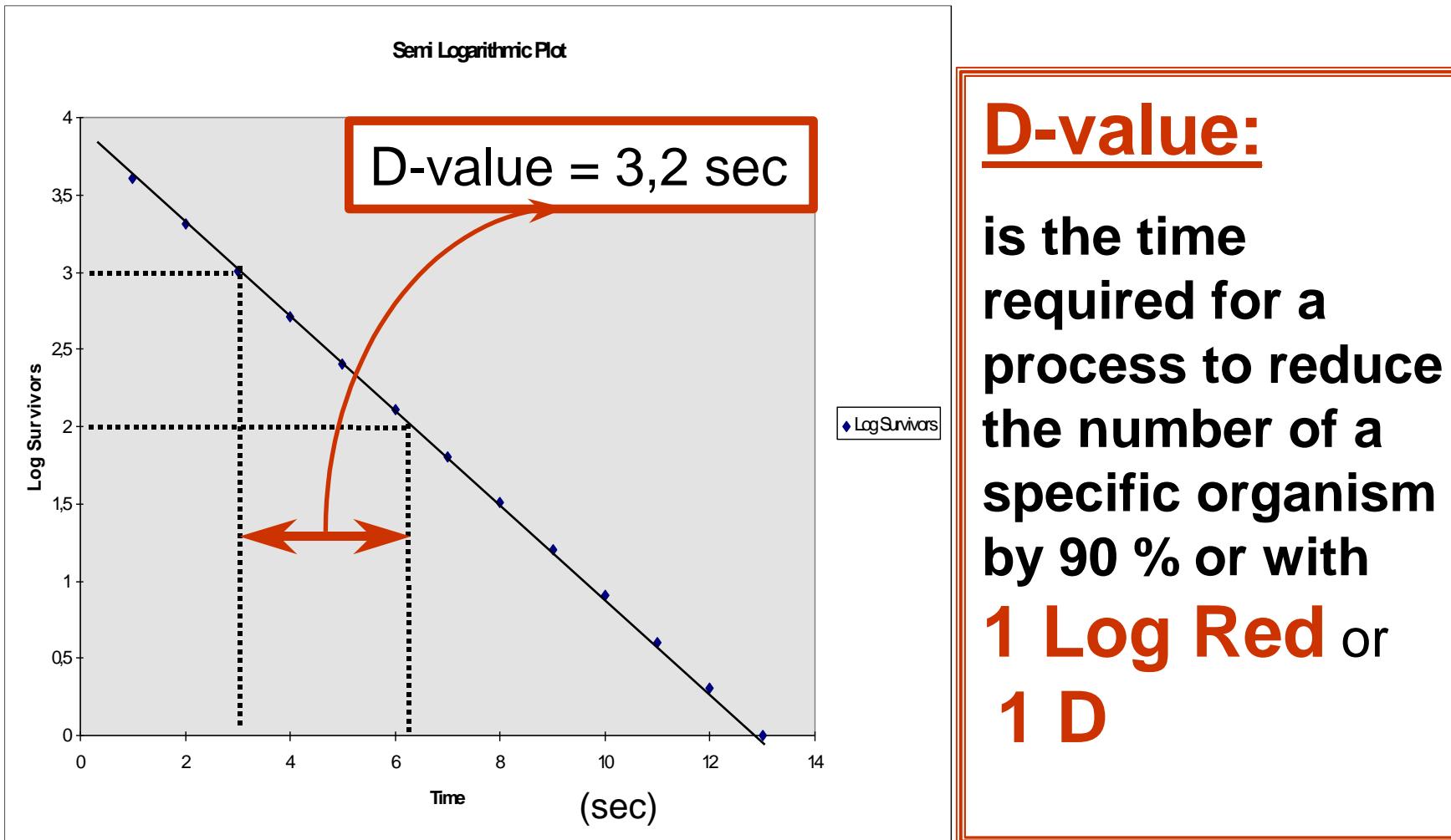
$$t = D = \frac{2,303}{k_d}$$


| Time | Survivors | Death per unit time | Total death | Log Red |
|------|-----------|---------------------|-------------|---------|
| 0    | 1 000 000 | 0                   | 0           | 0       |
| 1    | 100 000   | 900 000 = 90%       | 900 000     | 1       |
| 2    | 10 000    | 90 000 = 90%        | 990 000     | 2       |
| 3    | 1 000     | 9 000 = 90%         | 999 000     | 3       |
| 4    | 100       | 900 = 90%           | 999 900     | 4       |
| 7    | 0,1       | 0,9 = 90%           | 999 999,90  | 7       |
| 8    | 0,01      | 0,09 = 90%          | 999 999,99  | 8       |

# Killing Hypothesis




# Graphs of Survival Curves


Arithmetic

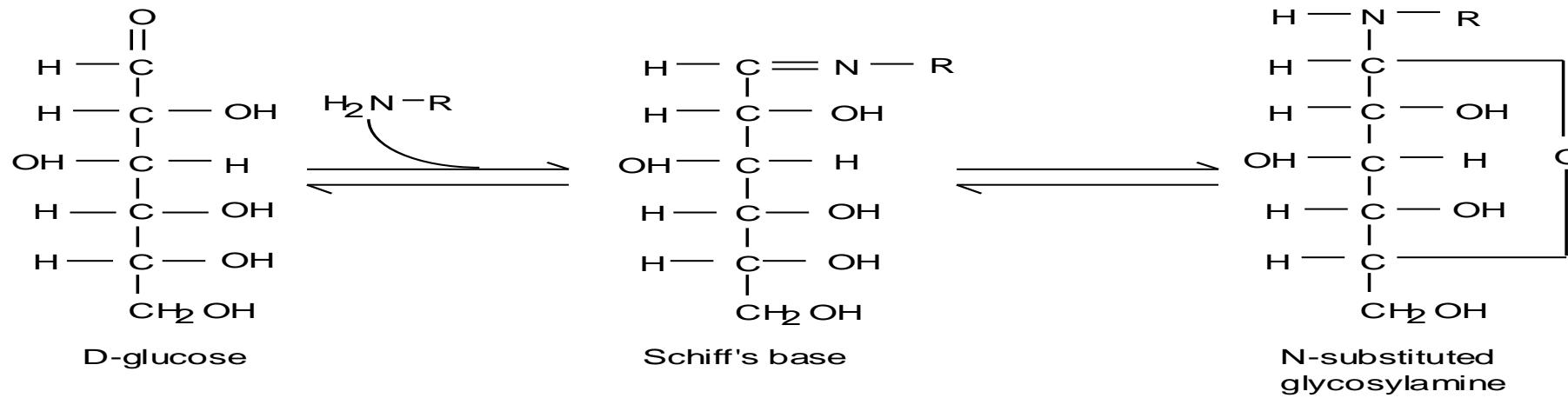


Semilogarithmic



# Decimal Reduction Value




# Explanation of D-value

The expression  $D_{65} = 1 \text{ min}$   
means that the number of organisms is reduced  
with 1 D when treated one minute at a  
processing temperature of  $65^{\circ}\text{C}$ .

Two (2) minutes exposure results in 2D.

|            |                         |
|------------|-------------------------|
| 1D = 90    | % reduction = 1 Log Red |
| 2D = 99    | % reduction = 2 Log Red |
| 3D = 99,9  | % reduction = 3 Log Red |
| 4D = 99,99 | % reduction = 4 Log Red |

# Maillard Reaction



Reaction of sugars upon heating;  
especially in presence of  
salts, ammonia or proteins

# Bioprocess sterilization

- Cell culture media contains heat labile components: sugar, amino acids, hormones and growth factors and sterilized by microfiltration
- Reactor and peripherals (acid/ base, medium reservoirs and piping) sterilized by heat
- DSP equipment usually sterilized chemically (0.1-2 M NaOH or acid)
- All production equipment requires CIP and SIP protocols and analytical methods for validation

# Kinetics of Heat Sterilisation

The heat inactivation constant depends on temperature like most rate constants of chemical reactions. This is usually described by Arrhenius equation:

$$k = A * e^{-\Delta E / R * T} \quad [4]$$

$A$  ( $\text{min}^{-1}$ );  $E$  ( $\text{Jmol}^{-1}$ ),  $R$  ( $\sim 8.31 \text{ Jmol}^{-1} \text{ K}^{-1}$ ),  
 $T$  ( $^{\circ}\text{K}$ )

$$\rightarrow \ln k = -\frac{\Delta E}{R} * \frac{1}{T} + \ln A \quad [5]$$

Table 10.1 Examples of  $\Delta E$  values for heat inactivation of spores and some chemical reactions.

| Inactivation of                     | $-\Delta E$ ( $\text{kJ mol}^{-1}$ ) |
|-------------------------------------|--------------------------------------|
| <i>B. subtilis</i> spores           | 318                                  |
| <i>B. stearothermophilus</i> spores | 283                                  |
| <i>Cl. botulinum</i> spores         | 343                                  |
| Folic acid                          | 70                                   |
| d-pantothenyl alcohol               | 88                                   |
| Cyanocobalamin                      | 97                                   |
| Thiamine HCl                        | 92                                   |
| Maillard reactions                  | $\approx 125$                        |

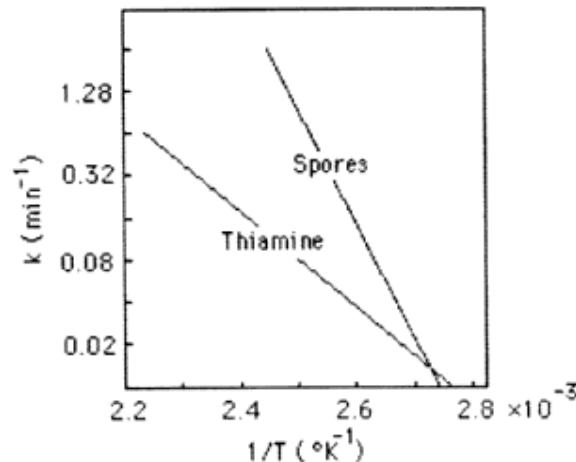



Fig 10.3 Arrhenius plots of inactivation of *B. stearothermophilus* spores and thiamine. Note that a temperature increase has a larger effect on the spore inactivation rate than on the vitamin inactivation rate.

## Example 1: Thermal death kinetics

The number of viable spores of a new strain of *Bacillus subtilis* is measured as a function of time at various temperatures

| Time [min] | Number of spores at:   |                        |                        |                        |
|------------|------------------------|------------------------|------------------------|------------------------|
|            | T=85°C                 | T=90°C                 | T=110°C                | T=120°C                |
| 0.0        | 2.40 x 10 <sup>9</sup> |
| 0.5        | 2.39 x 10 <sup>9</sup> | 2.38 x 10 <sup>9</sup> | 1.08 x 10 <sup>9</sup> | 2.05 x 10 <sup>7</sup> |
| 1.0        | 2.37 x 10 <sup>9</sup> | 2.30 x 10 <sup>9</sup> | 4.80 x 10 <sup>8</sup> | 1.75 x 10 <sup>5</sup> |
| 1.5        | -                      | 2.29 x 10 <sup>9</sup> | 2.20 x 10 <sup>8</sup> | 1.30 x 10 <sup>3</sup> |
| 2.0        | 2.33 x 10 <sup>9</sup> | 2.21 x 10 <sup>9</sup> | 9.85 x 10 <sup>7</sup> | -                      |
| 3.0        | 2.32 x 10 <sup>9</sup> | 2.17 x 10 <sup>9</sup> | 2.01 x 10 <sup>7</sup> | -                      |
| 4.0        | 2.28 x 10 <sup>9</sup> | 2.12 x 10 <sup>9</sup> | 4.41 x 10 <sup>6</sup> | -                      |
| 6.0        | 2.20 x 10 <sup>9</sup> | 1.95 x 10 <sup>9</sup> | 1.62 x 10 <sup>5</sup> | -                      |
| 8.0        | 2.19 x 10 <sup>9</sup> | 1.87 x 10 <sup>9</sup> | 6.88 x 10 <sup>3</sup> | -                      |
| 9.0        | 2.16 x 10 <sup>9</sup> | 1.79 x 10 <sup>9</sup> | -                      | -                      |

- Determine the activation energy for thermal death of *B. subtilis* spores
- What is the specific death constant at 100°C
- Estimate the time required to kill 99% of spores in a sample at 100°C

# Calculation of sterilisation time

According to the model for heat inactivation  $\ln(N) = \ln(N_0) - kt$   
it is not possible to calculate the time needed to reach sterility.

Thus, a **sterility criterion**,  $\nabla$ , has to be defined:

$$\nabla = \ln\left(\frac{N_0}{N_f}\right) \quad [6]$$

$N_f$ : final number of organisms

$\nabla$ : is also called ***Del factor*** or the ***design criterion often also mentioned as  $S_L$***

Estimation of sterilisation time  $F$ , using equation [2]

$$F_T = \frac{\nabla}{k} \quad [7a]$$

This sterilisation time depends also in the temperature applied since  $k$  is a function of temperature.

Some help:

$$\nabla = \ln \left( \frac{N_0}{N_f} \right)$$

$$\ln \left( \frac{N_0}{N_f} \right) = k t$$

$$k = A * e^{-\Delta E / R * T}$$

$$\nabla = A e^{-\Delta E / R * T} t$$

*is true for T constant*

Therefore:

$$\nabla = A \int_0^t e^{-\Delta E / R * T} dt$$

# *General Guidelines*

Volumes       $< 100 \text{ L}$        $\nabla = 25 - 50$

Volume       $> 100 \text{ L}$        $\nabla = 50 - 200$

## Example 2: Inactivation of *B. subtilis* spores

For the inactivation of *B. subtilis* spores is  $A = 9.5 \times 10^{37} \text{ min}^{-1}$  and  $E = 287.4 \text{ kJ/mol}$ . Calculate the holding time for a liquid enriched with spores at  $115^\circ\text{C}$ , so that a death ratio of  $10^6$  will be reached.

## Example 3: Sterilisation of a bioreactor

In a bioreactor 10000 L of medium was sterilised at 120°C. The time/ temperature profile for this process is summarised in the following table:

Practical comments:

- Sterilisation effect below 100°C can be neglected (only ca. 2% on total lethality)
- Heating and cooling rates are considered constant With 1°C/min

| 115 | 19  | 0.405  |
|-----|-----|--------|
| 120 | 91  | 1.47   |
| 120 | 101 | 1.47   |
| 115 | 104 | 0.483  |
| 110 | 107 | 0.154  |
| 100 | 114 | 0.0143 |

Calculate  $\nabla_{ges}$  ( $= \nabla_{heating} + \nabla_{holding} + \nabla_{cooling}$ )!

*Use the following table!*

# Example 3: Sterilisation of a bioreactor

Tabelle 2.3. Werte für  $k$  und  $\nabla_{\text{ges}}$  aus Daten, die mit *B. stearothermophilus* gewonnen wurden.  $A = 4,93 \cdot 10^{37}$ ;  $E = 282,1 \text{ kJ/mol}$

| Temperatur, °C | $k$    | Kumulativer Wert von $\nabla$ |
|----------------|--------|-------------------------------|
| 100            | 0,0143 | –                             |
| 101            | 0,0182 | 0,0325                        |
| 102            | 0,0232 | 0,0558                        |
| 103            | 0,0296 | 0,0854                        |
| 104            | 0,0376 | 0,1229                        |
| 105            | 0,0477 | 0,171                         |
| 106            | 0,0604 | 0,231                         |
| 107            | 0,0765 | 0,308                         |
| 108            | 0,0967 | 0,404                         |
| 109            | 0,122  | 0,526                         |
| 110            | 0,154  | 0,681                         |
| 111            | 0,194  | 0,875                         |
| 112            | 0,244  | 1,12                          |
| 113            | 0,307  | 1,43                          |
| 114            | 0,385  | 1,81                          |
| 115            | 0,483  | 2,29                          |
| 116            | 0,605  | 2,90                          |
| 117            | 0,757  | 3,66                          |
| 118            | 0,945  | 4,60                          |
| 119            | 1,18   | 5,78                          |
| 120            | 1,47   | 7,25                          |
| 121            | 1,83   | 9,08                          |
| 122            | 2,28   | 11,36                         |
| 123            | 2,83   | 14,19                         |
| 124            | 3,51   | 17,70                         |
| 125            | 4,35   | 22,05                         |
| 126            | 5,39   | 27,45                         |
| 127            | 6,67   | 34,11                         |
| 128            | 8,24   | 42,36                         |
| 129            | 10,18  | 52,54                         |
| 130            | 12,55  | 65,08                         |

## Comparison of two different volumes

$$N_{0(1)} / N_{0(2)} = V_1 / V_2$$

$$N_{0(1)} / N = (N_{0(2)} / N) \cdot (V_1 / V_2)$$

$$\ln (N_{0(1)} / N) = \ln (N_{0(2)} / N) + \ln (V_1 / V_2)$$

Using eq. [6]

$$\nabla_1 = \nabla_2 + \ln (V_1 / V_2)$$

$$\text{Or } \nabla_1 = \nabla_2 + 2.3 \log (V_1 / V_2)$$

V: volume; 1: bigger reactor, 2: smaller reactor

## Example 4: Scaling-up sterilisation

For a 10 L laboratory bioreactor a sterilisation criteria of  $\nabla = 50$  is sufficient. Which is the minimum sterilisation criteria, if the process is scaled-up to a 1000 L reactor?

# Bioprocess sterilization

- Cell culture media contains heat labile components: sugar, amino acids, hormones and growth factors and sterilized by microfiltration
- Reactor and peripherals (acid/base, medium reservoirs and piping) sterilized by heat
- DSP equipment usually sterilized chemically (0.1-2 M NaOH or acid)
- All production equipment requires CIP and SIP protocols and analytical methods for validation